Dr Michael M Nevels:
Reader in Virology

Dr Michael M Nevels

Dr Michael M Nevels
Biomolecular Sciences Building
University of St Andrews
North Haugh
St Andrews
KY16 9ST

tel: 01334 463375
room: 2.18

Related Content:

School of Biology
Biomedical Sciences Research Complex

edit mmn3 details

Human herpesvirus biology. Most of us are infected with one or more of the eight known human herpesviruses. Although all herpesviruses establish incurable, life-long infections, they usually cause only mild if any symptoms in people with fully developed and healthy immune systems. However, herpesviruses can be dangerous pathogens under conditions of developmental or acquired immune deficiency. In fact, congenital infection with the human herpesvirus 5 or cytomegalovirus (CMV) is the leading cause of brain damage, hearing loss and other neurological disorders in children in the UK and far beyond. In addition, CMV causes disease and death in immune-suppressed people including transplant, AIDS, cancer and intensive care patients. Despite the considerable public health burden, there are few prevention and treatment options for CMV and other herpesviruses.

Epigenetic control of infection. Herpesviruses have large (by viral standards) double-stranded DNA genomes. Like our own genome, nuclear herpesvirus DNA forms nucleosomes (histone octamers wrapped by 147 base pairs of DNA) which are the basic building blocks of chromatin and the substrates of most epigenetic processes. Our work has contributed much to the current view of how nucleosomes are assembled and modified on CMV genomes to control viral transcription. We also identified a CMV gene product, the 72-kDa immediate-early 1 protein (IE1), which binds to the “acidic patch” formed by histones H2A and H2B on the surface of nucleosomes presumably to modulate chromatin function. Our ongoing work aims at further elucidating the chromatin-based epigenetic processes in viral and cellular chromatin that control the transcription, replication and repair of DNA to dictate the outcome of infection and disease (collaboration with Prof Eran Segal, Weizmann Institute of Science).

Innate immune signalling. Both acquired and innate immune mechanisms are thought to be vital for keeping CMV and other herpesviruses in check, so that they cannot make us sick. Arguably, our most powerful innate means to fight viruses is the interferon (IFN) response. Incidentally, the same CMV protein that proved to target nucleosomes (see above) also turned out to be a major antagonist of the IFN response. In fact, the viral IE1 protein confers type I IFN resistance to CMV by interacting with the human STAT2 protein, which is essential for type I signalling. Unlike other viral STAT2 antagonists, IE1 does not target STAT2 for degradation but re-localises the protein within the nucleus. IE1 also forms a complex with another STAT family member, STAT3, a critical mediator of signalling via interleukin 6 (IL6) and related cytokines. By targeting STAT3, IE1 rewires upstream STAT3 to downstream STAT1 signalling. Consequently, genes normally induced by IL6 are repressed while genes normally induced by IFNγ become responsive to IL6 in the presence of IE1. Thus IE1 rewires central STAT-dependent cellular signalling pathways to divert cytokine responses relevant to CMV pathogenesis.

Novel diagnostic, preventive and therapeutic strategies. As part of the “TargetHerpes” European consortium, we developed siRNA- and small molecule-based antiviral agents directed against IE1 and other CMV proteins not targeted by currently available drugs. Ongoing work aims at exploiting the IFN antagonist function of IE1 to identify innovative antiviral compounds (collaboration with Dr Cathy Adamson and Prof Rick Randall, University of St Andrews). We have also been exploring the feasibility of “epigenetic therapies” for CMV and other virus infections. Moreover, our work has contributed to the development of T-Track® CMV, a kit for quantification of CMV-specific immune cells from patient blood, by Lophius Biosciences (Germany). The kit employs purified CMV pp65 and IE1 proteins specifically formulated to allow for in vitro re-stimulation of peripheral blood mononuclear cells in a largely HLA-independent fashion. Reactivated cells are subsequently quantified by IFNγ-based ELISpot technology. The kit is currently evaluated in phase 2 clinical trials and will be further developed for routine use to monitor cell-based anti-CMV immune responses in solid organ and bone marrow transplant patients. Finally, our work has contributed to the development of the Redvax CMV vaccine platform by Redbiotec (Switzerland), sold to Pfizer in 2014.


Basic and translational research on herpesviruses including the human cytomegalovirus (CMV)

source: symbiosis

Recent Publications:

Recent publications

5  (of 36 published available) for mmn3. (source: University of St Andrews PURE)
Please click title of any item for full details.

2018 (9)
Journal of Virology
Human cytomegalovirus immediate early 1 protein causes loss of SOX2 from neural progenitor cells by trapping unphosphorylated STAT3 in the nucleus
Cong-Cong Wu, Xuan Jiang, Xian-Zhang Wang, Xi-Juan Liu, Xiao-Jun Li, Bo Yang, Han-Qing Ye, Thomas Harwardt, Man Jiang, Hui-Min Xia, Wei Wang, William J. Britt, Christina Paulus, Michael Martin Nevels, Min-Hua Luo 
Keywords: QH301 BiologyNDAS
2018 (9)
Journal of General Virology
vol.99 pp.1274-1285
Impact of human cytomegalovirus on glioblastoma cell viability and chemotherapy treatment
Claudia Januário dos Santos, Fabiane Lucy Ferreira Castro, Rodrigo Barbosa de Aguiar, Isabela Godoy Menezes, Ana Carolina Santos, Christina Paulus, Michael Martin Nevels, Maria Cristina Carlan da Silva 
Keywords: Human Cytomegalovirus (CMV), Glioblastoma multiforme, Chemotherapy, Temozolomide, CarmustineQR355 VirologyNDAS
2018 (6)
vol.60 pp.276–277
Launching a global network of virologists
Ahmed S Abdel-Moneim, Anupam Varma, Flor H Pujol, George K Lewis, Janusz T Paweska, Jesús L Romalde, Maria Söderlund-Venermo, Matthew D Moore, Michael Martin Nevels, Vikram N Vakharia, Vinod Joshi, Yashpal Singh Malik, Zhengli Shi, Ziad A Memish 
Keywords: QR355 Virology
2018 (6/9)
Molecular Cell
vol.71 pp.745-760
Non-canonical activation of the DNA sensing adaptor STING by ATM and IFI16 mediates NF-κB signalling after nuclear DNA damage
Gillian Dunphy, Sinéad M Flannery, Jessica F Almine, Dympna J Connolly, Christina Paulus, Kasper L Jonsson, Martin R Jakobsen, Michael Martin Nevels, Andrew G Bowie, Leonie Unterholzner 
Keywords: Innate immunity, DNA damage, Etoposide, Interferon, IFI16, STING, p53, TRAF6, UbiquitinQR180 ImmunologyDAS