[New Paper] Intragroup and intragenomic conflict over chemical defence against predators

Best R, Ruxton GD & Gardner A (in press) Intragroup and intragenomic conflict over chemical defence against predators. Ecology and Evolution doi: 10.1002/ece3.3926

Insects are often chemically defended against predators. There is considerable evidence for a group-beneficial element to their defenses, and an associated potential for individuals to curtail their own investment in costly defense while benefitting from the investments of others, termed “automimicry.” Although females in chemically defended taxa often lay their eggs in clusters, leading to siblings living in close proximity, current models of automimicry have neglected kin-selection effects, which may be expected to curb the evolution of such selfishness. Here, we develop a general theory of automimicry that explicitly incorporates kin selection. We investigate how female promiscuity modulates intragroup and intragenomic conflicts overinvestment into chemical defense, finding that individuals are favored to invest less than is optimal for their group, and that maternal-origin genes favor greater investment than do paternal-origin genes. We translate these conflicts into readily testable predictions concerning gene expression patterns and the phenotypic consequences of genomic perturbations, and discuss how our results may inform gene discovery in relation to economically important agricultural products.

Photo credit: Wikimedia

[PhD Opportunity] Chinese Scholarship Council PhD Studentships

As part of an agreement with the Chinese Scholarship Council (CSC), the University of St Andrews is offering 30 fully-funded 4-year PhD studentships to Chinese nationals. Full details of the scheme are available here.

I offer projects on evolutionary theory, so if you are interested in pursuing this opportunity in my research group, please do get in touch. The deadline for applications is 19 Jan 2018.

[New Paper] The meaning of intragenomic conflict

Gardner A & Úbeda F (2017) The meaning of intragenomic conflict. Nature Ecology & Evolution doi: 10.1038/s41559-017-0354-9.

Recent years have seen an explosion of interest in genes that function for their own good and to the detriment of other genes that reside in the same genome. Such intragenomic conflicts are increasingly recognized to underpin maladaptation and disease. However, progress has been impeded by a lack of clear understanding regarding what intragenomic conflict actually means, and an associated obscurity concerning its fundamental drivers. Here we develop a general theory of intragenomic conflict in which genes are viewed as inclusive-fitness-maximizing agents that come into conflict when their inclusive-fitness interests disagree. This yields a classification of all intragenomic conflicts into three categories according to whether genes disagree about where they have come from, where they are going, or where they currently are. We illustrate each of these three basic categories, survey and classify all known forms of intragenomic conflict, and discuss the implications for organismal maladaptation and human disease.

[New Paper] The purpose of adaptation

Gardner A (2017) The purpose of adaptation. Interface Focus 7, 20170005.

A central feature of Darwin’s theory of natural selection is that it explains the purpose of biological adaptation. Here, I: emphasize the scientific importance of understanding what adaptations are for, in terms of facilitating the derivation of empirically testable predictions; discuss the population genetical basis for Darwin’s theory of the purpose of adaptation, with reference to Fisher’s ‘fundamental theorem of natural selection’; and show that a deeper understanding of the purpose of adaptation is achieved in the context of social evolution, with reference to inclusive fitness and superorganisms.

 

 

[New Paper] Short-sighted virus evolution and a germline hypothesis for chronic viral infections

Lythgoe KA, Gardner A, Pybus OG & Grove J (in press) Short-sighted virus evolution and a germline hypothesis for chronic viral infections. Trends in Microbiology. doi: 10.1016/j.tim.2017.03.003

With extremely short generation times and high mutability, many viruses can rapidly evolve and adapt to changing environments. This ability is generally beneficial to viruses as it allows them to evade host immune responses, evolve new behaviours, and exploit ecological niches. However, natural selection typically generates adaptation in response to the immediate selection pressures that a virus experiences in its current host. Consequently, we argue that some viruses, particularly those characterised by long durations of infection and ongoing replication, may be susceptible to short-sighted evolution, whereby a virus’ adaptation to its current host will be detrimental to its onward transmission within the host population. Here we outline the concept of short-sighted viral evolution and provide examples of how it may negatively impact viral transmission among hosts. We also propose that viruses that are vulnerable to short-sighted evolution may exhibit strategies that minimise its effects. We speculate on the various mechanisms by which this may be achieved, including viral life history strategies that result in low rates of within-host evolution, or the establishment of a ‘germline’ lineage of viruses that avoids short-sighted evolution. These concepts provide a new perspective on the way in which some viruses have been able to establish and maintain global pandemics.

[New Paper] Intrafamily and intragenomic conflicts in human warfare

Micheletti AJC, Ruxton GD & Gardner A (2017) Intrafamily and intragenomic conflicts in human warfare. Proceedings of the Royal Society of London Series B — Biological Sciences 20162699.

Recent years have seen an explosion of multidisciplinary interest in ancient human warfare. Theory has emphasized a key role for kin-selected cooperation, modulated by sex-specific demography, in explaining intergroup violence. However, conflicts of interest remain a relatively underexplored factor in the evolutionary-ecological study of warfare, with little consideration given to which parties influence the decision to go to war and how their motivations may differ. We develop a mathematical model to investigate the interplay between sex-specific demography and human warfare, showing that: the ecology of warfare drives the evolution of sex-biased dispersal; sex-biased dispersal modulates intrafamily and intragenomic conflicts in relation to warfare; intragenomic conflict drives parent-of-origin-specific patterns of gene expression—i.e. ‘genomic imprinting’—in relation to warfare phenotypes; and an ecological perspective of conflicts at the levels of the gene, individual, and social group yields novel predictions as to pathologies associated with mutations and epimutations at loci underpinning human violence.