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There is growing interest in understanding how kin selection drives the evolution of social behaviours

in viscous populations. A key result, that has inspired much work on this topic, is the exact cancellation

of the genetic relatedness and kin competition effects of dispersal in the simplest models of population

viscosity, such that a reduction in the rate of dispersal neither promotes nor inhibits the evolution of

helping behaviour. This theoretical result has been demonstrated for populations characterised by

haploid, diploid and haplodiploid modes of inheritance. Here we develop a model of general ploidy that

recovers these three scenarios as special cases and allows examination of scenarios that have not been

considered previously. Specifically, we: clarify the importance of the implicit assumption of monandry

in previous models; show that the cancellation result obtains in some models of ploidy but not in

others; and reveal that the cancellation result obtains for different reasons in different models of ploidy.

The cancellation result therefore hinges upon a population’s genetic system as well as its demography.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Recent years have seen much interest in the role for demography
to mediate social evolution. Of particular interest has been the
evolution of helping behaviour in viscous populations. Hamilton
(1964, 1971) suggested that indiscriminate helping could be favoured
in populations that are characterised by low rates of dispersal, such
that individuals tend to be closely related to their neighbours.
However, low dispersal also leads to localised competition for
resources among kin, and this can reduce selection for helping
(Hamilton, 1971; Grafen, 1984; Queller, 1992; Frank, 1998; West
et al., 2002). Indeed, Taylor (1992a) showed that – in the simplest
scenario of an infinite, inelastic island model (Wright, 1931) – the
effects of genetic relatedness and kin competition exactly cancel, such
that there is no net impact of the rate of dispersal upon the evolution
of helping.

This surprising result has stimulated a great deal of theoretical
work, exploring which alterations to the basic model assumptions
bring about a decoupling of genetic relatednes and kin competition,
such that population viscosity may promote the evolution of helping
(reviewed by Lehmann and Rousset, 2010). These include factors such
as elastic/unsaturated populations (Taylor, 1992b; Alizon and Taylor,
2008), overlapping generations (Taylor and Irwin, 2000; Irwin and
Taylor, 2001), dispersal-dependent behaviour (Perrin and Lehmann,
ll rights reserved.

logy, University of Oxford,

Tel.: þ44 1865 271271.

rdner).
2001; El Mouden and Gardner, 2008), budding dispersal (Gardner and
West, 2006; Lehmann et al., 2006), sex-biased dispersal (Johnstone
and Cant, 2008; Gardner, 2010), birth–death versus death–birth
demographies (Grafen and Archetti, 2008), reproductive skew (Pen
and West, unpublished; Johnstone, 2008) and resource heterogeneity
(Rodrigues and Gardner, 2012). Some of these theoretical predictions
have been empirically tested using experimental evolution methods
(Kümmerli et al., 2009).

Taylor’s (1992a) original analysis considered three separate
models, concerning haploid, diploid and haplodiploid modes
of inheritance. Here, we develop a model of general ploidy
(cf. Grafen, 1986, 2006a) that recovers each of these three scenarios
as special cases, and allows examination of scenarios not consid-
ered by Taylor (1992a). We also relax Taylor’s (1992a) implicit
assumption of monandry, allowing females to mate with poten-
tially multiple males. This allows an assessment of the robustness
of Taylor’s (1992a) cancellation result to variation in model
assumptions, and helps to illuminate the genetical and demo-
graphic reasons for cancellation, both in his original models and
also more generally.
2. Model and analysis

2.1. Model

We assume a population comprising an infinite number of
patches, in which adult females each produce a large number of
offspring. The probability that two randomly chosen juveniles
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that are born in the same patch are maternal siblings is denoted
by a, and the probability that two randomly chosen maternal siblings
are also paternal siblings is denoted by b. The number of genomes
inherited by a juvenile female from her mother is denoted by k, and
the number of genomes she inherits from her father is denoted by l
(Fig. 1). The number of genomes inherited by a juvenile male from his
mother is denoted by m, and the number of genomes he inherits from
his father is denoted by n (Fig. 1).

We allow breeding females to divert resources from maternal
care to communal care – i.e. helping behaviour – thereby improv-
ing the survival of random juveniles in her patch whilst reducing
the survival of her own offspring. Formally, we denote a focal
juvenile’s probability of survival by S(x,y), where x is the invest-
ment into helping made by that juvenile’s mother, and y is the
average investment into helping made by breeding females in the
juvenile’s patch. And we define –c�qS/qx, representing the cost of
helping for the actor, and b�qS/qy, representing the benefit of
helping for the recipient.

Following social interaction, adult females die, and all juve-
niles surviving to adulthood mate at random within their patch.
After mating, the males die and the females either disperse with
probability d to another patch or else remain with probability
1�d in their natal patch. Following dispersal, females comp-
ete within patches for breeding opportunities, returning the
population to the beginning of the lifecycle. Model notation is
summarised in Table 1.

Taylor’s (1992a) model is recovered by setting a¼1/n (that is,
there are n breeding females per patch, each having the same
fecundity; our model keeps the number of breeding females
Fig. 1. A general model of ploidy. Daughters inherit k genomes from their mother

and l genomes from their father, and sons inherit m genomes from their mother

and n genomes from their father. Hence, females are (kþl)-ploid whilst males are

(mþn)-ploid.

Table 1
A summary of model notation.

Symbol Definition

a Probability that tw

b Probability that tw

k Number genomes

l Number of genom

m Number of genom

n Number of genom

d Rate of dispersal

S Probability of juve

x Helping strategy o

y Average helping s

z Average helping s

b Survival benefit of

c Survival cost of he

m Male

f Female

d Focal female’s dau

s Focal female’s son

f Random juvenile f

m Random juvenile m

cX Class reproductive

pY Consanguinity of f

A Potential for helpi
implicit, and allows for any degree of reproductive skew) and
b¼1 (that is, monandry; our model allows females to mate with
potentially multiple males). Moreover, Taylor’s (1992a) haploidy
model is recovered by setting k¼1, l¼0, m¼0 and n¼0; his
diploidy model is recovered by setting k¼1, l¼1, m¼1 and n¼1;
and his haplodiploidy model is recovered by setting k¼1, l¼1,
m¼1 and n¼0.
2.2. Evolution of helping

We determine how natural selection operates upon indiscri-
minate helping behaviour, using the neighbour modulated fitness
approach of Taylor and Frank (1996; see also Taylor, 1996; Frank,
1997, 1998; Rousset, 2004; Taylor et al., 2007). This yields a
condition for natural selection to favour helping:

�cðcf pdþcmpsÞþbðcf pfþcmpmÞ�ð1�dÞ2ðb�cÞðcf pfþcmpmÞ40, ð1Þ

where cf and cm are the class reproductive values (Fisher, 1930;
Taylor, 1996; Grafen, 2006a) of females and males, respectively;
and pd, ps, pf and pm are the coefficients of consanguinity (Bulmer,
1994) between an adult female and her daughter, her son, a
random juvenile female from her patch, and a random juvenile
male from her patch, respectively (see Appendix for details).

Inequality (1) yields a simple inclusive fitness interpretation
(Hamilton 1964, 1970). First, helping reduces the survival of
the actor’s offspring by an amount c, and the actor values her
offspring by an amount cfpdþcmps. Second, helping increases the
survival of random juveniles on the actor’s patch by an amount b,
and the actor values these juveniles by an amount cfpfþcmpm.
Third, to the extent that competition is local—i.e. (1�d)2, the
probability that two females competing for breeding opportu-
nities within a patch are both native to that patch (Frank, 1998;
Gardner and West, 2006)—the net increase b�c in the survival of
local juveniles leads to a competitive displacement of juveniles
who were born on the actor’s patch, and the actor values them by
an amount cfpfþcmpm.

Inequality (1) may be rearranged to the form c/boA, where
A defines the potential for helping (cf. Gardner, 2010), i.e. the
value that an adult female places on the survival of a random
juvenile in her patch, relative to the value that she places on the
o random juvenile patch mates are maternal siblings

o random maternal siblings are paternal siblings

in daughter that came from mother

es in daughter that came from father

es in son that came from mother

es in son that came from father

nile survival

f focal juvenile’s mother

trategy among breeding females in focal juvenile’s patch

trategy among breeding females in population
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survival of one of her own offspring, chosen at random. This is

A¼
ðcf pfþcmpmÞ�ð1�dÞ2ðcf pfþcmpmÞ

ðcf pdþcmpsÞ�ð1�dÞ2ðcf pfþcmpmÞ
: ð2Þ

The class reproductive values and consanguinities – and hence,
the potential for helping – can be expressed exclusively in terms
of model parameters (i.e. a, b, k, l, m, n and d; see Appendix for
details). Unfortunately, the general expression for the potential
for helping is too complicated to reproduce here.
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Fig. 2. The implicit assumption of monandry underlies Taylor’s cancellation result.

The potential for helping (A) is shown as a function of the probability that

maternal siblings are also paternal siblings (b) and the rate of dispersal (d) under

diploidy. There is no net impact of dispersal rate upon the potential for helping

under monandry (dA/dd¼0 when b¼1). Polyandry reduces the potential for

helping (dA/db40) and leads the potential for helping to increase with the rate

of dispersal (dA/dd40 when bo1). Here we assume a¼0.5.
3. Results

3.1. Recovery of Taylor’s (1992a) results

We recover Taylor’s (1992a) models by making the appro-
priate substitutions in our general model. Taylor’s (1992a)
haploidy model is recovered by making the substitutions k¼1,
l¼0, m¼0 and n¼0. Here, we find that the potential for helping is
A¼a. Recalling that a¼1/n in Taylor’s (1992a) model, this is
exactly equivalent to his condition b/c4n for the evolution of
helping (see Rousset (2004, pp. 112–116) for discussion of how
this result relates to Hamilton’s rule of kin selection). Importantly,
the potential for helping is not mediated by the rate of dispersal
(dA/dd¼0 for all 0rdr1), and is equal to the probability that
two random juveniles sharing the same patch are maternal
siblings. We recover Taylor’s (1992a) diploidy model by making
the substitutions k¼1, l¼1, m¼1, n¼1 and b¼1, and we recover
his haplodiploidy model by making the substitutions k¼1, l¼1,
m¼1, n¼0 and b¼1. In both cases, we find that A¼a, i.e. the
potential for helping is independent of the rate of dispersal.

3.2. The importance of monandry

Taylor (1992a) made an implicit assumption of monandry
(b¼1) in his models of diploidy and haplodiploidy. We find that
the potential for helping is not, in general, independent of the
probability b that maternal siblings are also paternal siblings, and
hence there is an impact of female mate fidelity upon the
potential for helping. Moreover, we find that relaxing the assump-
tion of strict monandry in Taylor’s (1992a) models of diploidy and
haplodiploidy leads to the breakdown of the cancellation result.
That is, if females mate with more than one male (bo1), the
potential for helping is not generally independent of the rate of
dispersal (Fig. 2). In particular, we find that the potential for
helping increases with the degree of monandry (dA/db40), and
that the potential for helping increases with the rate of dispersal
when females are polyandrous (dA/dd40 when bo1).

Why does polyandry (bo1) lead to the breakdown of Taylor’s
(1992a) cancellation result? This is most easily understood by
considering Taylor’s (1992a, p. 355) diploidy analysis, and noting
that his derivation of the cancellation result explicitly hinges
upon the relatedness of two random juveniles on the same patch
being equal to the relatedness of a mother to a random juvenile
on her patch. Since the relatedness of two random juveniles is
equal to the average of the relatedness between the first juvenile
and the mother of the second juvenile and the relatedness
between the first juvenile and the father of the second juvenile,
the cancellation result requires that the relatedness between a
mother and a random juvenile is equal to the relatedness between
a father and a random juvenile. This is the case if all of a female’s
offspring are due to the same father, but need not hold more
generally. For example, if there is full dispersal (d¼1), a single
breeding female per patch (a¼1), and every one of a female’s
offspring has a different father (b¼0), then the breeding female is
closely related to all of the offspring born in the patch but each of
her mates is related to only one of these offspring.

3.3. The importance of ploidy

Having shown that polyandry (bo1) may lead to the failure of
Taylor’s (1992a) cancellation result, we now proceed on the
assumption of monandry (b¼1). We find that, whilst the cancel-
lation result does obtain in certain scenarios (including the
haploidy, diploidy and haplodiploidy scenarios considered by
Taylor), it does not obtain in every scenario. The general solution
for A is too complicated to be useful in explaining when and why
the potential for helping is independent of the rate dispersal.
However, we are able to make some observations.

First, we observe that the cancellation result obtains in every
scenario with sexually-symmetrical inheritance (i.e. k¼l¼m¼n).
In such scenarios, we have pd¼ps¼pO and pf¼pm¼pP, and sub-
stituting these consanguinities into expression (2) obtains
A¼(R�(1�d)2R)/(1�(1�d)2R), where R¼pP/pO is the value an
adult female places upon a random juvenile in her patch relative
to the value she places upon her own offspring. Noting that
R¼aþ(1�a)r (where r is the value an adult female places upon
a random non-descendant juvenile relative to her own offspring)
and r¼(1�d)2R (owing to the assumption of monandry; b¼1), we
obtain A¼a. Thus, sexually-symmetrical inheritance is sufficient for
the cancellation result to obtain.

Second, we observe that the cancellation result also occurs in
some scenarios with sexually-asymmetric inheritance. This is
illustrated by the haplodiploidy scenario (k¼l¼m¼1, n¼0), in
which we have A¼a despite sexually-asymmetric inheritance. Here,
we find that artificially varying the class reproductive values away
from their proper values of cf¼2/3 and cm¼1/3 causes the potential
for helping to both vary and also cease to be independent of the rate
of dispersal. This is in contrast to the sexually-symmetric inheritance
models, in which artificially varying the values of cf and cm does not
impact upon the potential for helping. This means that the cancella-
tion result of Taylor (1992a) occurs for different reasons in different
scenarios, and that sexually-symmetrical inheritance is not necessary

for the cancellation result to obtain.
Third, we observe that the cancellation result does not hold in any

scenario in which genes flow from males to females but not from
females to males (i.e. l40 and m¼0; and hence, for the model to be
biologically feasible, n40). In such scenarios, although females may
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reproduce and contribute genes to their daughters, they have no
long-term reproductive value. That is, they are the ‘living dead’,
and we term them ‘zombies’. Substituting the class reproductive
values cf¼0 and cm¼1 into Eq. (2) obtains a potential for helping of
A¼(pm�(1�d)2pm)/(ps�(1�d)2pm). Since all of a male’s genes
come from his father, the consanguinity of mother and son ps is
equal to the consanguinity of a female to her mating partner,
which is the consanguinity of a juvenile female and a juvenile male
who are born on the same patch, or pfm. And the consanguinity
of an adult female to a juvenile male in her patch is
pm¼apsþ(1�a)(1�d)2pfm. That is: with probability a the juvenile
male is her son, in which case they have consanguinity ps; and with
probability 1�a the juvenile male is not her son, but with
probability (1�d)2 his father was born on her patch, in which
case they have consanguinity pfm. Making these substitutions,
we obtain A¼[1�(1�(1�d)2)(1�a)]/[2�a�(1�(1�d)2)(1�a)],
which does depend upon the rate of dispersal (Fig. 3). Thus, the
existence of zombie females is sufficient for the cancellation result
to fail.

A more systematic exploration of ploidy scenarios is pursued
in Table 2. Since there is an infinite number of possible scenarios,
we restrict our attention to those in which an individual receives
either zero or one genome from either parent (that is, k¼0 or 1,
l¼0 or 1, m¼0 or 1, n¼0 or 1 and b¼1). This binary model defines
24
¼16 different scenarios, of which 10 are feasible for analysis
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Fig. 3. Population viscosity promotes helping in zombies. In scenarios where

females have zero reproductive value (e.g. scenarios 6 and 14 in Table 2), the

potential for helping (A) decreases as the rate of dispersal (d) increases. Here we

assume a¼0.1, 0.2 and 0.5, and b¼1.

Table 2
Results for the binary model of ploidy.

# j k l m Potential for helping (A)

1 0 0 0 0 –

2 0 0 0 1 –

3 0 0 1 0 –

4 0 0 1 1 –

5 0 1 0 0 –

6 0 1 0 1 1�ð1�ð1�dÞ2Þð1�aÞ
2�a�ð1�ð1�dÞ2 Þð1�aÞ

7 0 1 1 0 a
8 0 1 1 1 a
9 1 0 0 0 a

10 1 0 0 1 a
11 1 0 1 0 a
12 1 0 1 1 a
13 1 1 0 0 –

14 1 1 0 1 1�ð1�ð1�dÞ2Þð1�aÞ
2�a�ð1�ð1�dÞ2 Þð1�aÞ

15 1 1 1 0 a
16 1 1 1 1 a
(Table 2). The remaining 6 scenarios either make biologically impos-
sible assumptions (such as scenario 5, in which k¼0, l¼1, m¼0 and
n¼0; that is, males carry no genes but make genetic contributions to
daughters) or else contradict the analysis (such as scenario 1, in
which k¼0, l¼0, m¼0 and n¼0; that is, there is no genetic material
in the population, such that helping cannot evolve by natural
selection). We find that the cancellation result obtains in 8 of the
10 feasible scenarios (scenarios 7–12 and 15 & 16) but that the
potential for helping is mediated by the rate of dispersal in 2 of the
feasible scenarios (scenarios 6 and 14). Both of the scenarios in which
the cancellation result does not obtain involve zombie females.
4. Discussion

We have generalised Taylor’s (1992a) model of indiscriminate
helping in inelastic viscous populations, in order to determine the
consequences of relaxing his implicit and explicit assumptions of
the genetic system. We have shown that Taylor’s (1992a) implicit
assumption of monandry (each female mates with a single male)
is key to his surprising cancellation result, whereby the potential
for helping is independent of the rate of dispersal. In particular,
polyandry leads to a lower potential for helping over all, and
a high potential for helping in populations characterised by
a higher rate of dispersal. We have also shown that, even
maintaining the assumption of monandry, Taylor’s (1992a) can-
cellation result is not robust to changes in assumptions about
ploidy. In particular, in 20% of the specific ploidy scenarios that
we have considered, the potential for helping is dependent upon
the rate of dispersal, with a lower potential for helping in
populations characterised by a higher rate of dispersal. That is,
population viscosity can promote the evolution of helping.

A complete understanding of the impact of ploidy upon Taylor’s
(1992a) cancellation result has been impeded by the complexity of
our general results. However, we have made four general observa-
tions. First, sexually-symmetrical inheritance (i.e. k¼l¼m¼n) is
sufficient for the cancellation result to obtain (assuming monandry).
An illustration is provided by Taylor’s (1992a) model of diploidy, and
here we have proven the principle more generally. Second, sexually-
symmetrical inheritance is not necessary for the cancellation result to
obtain. An illustration is provided by Taylor’s (1992a) model of
haplodiploidy (i.e. k¼l¼m¼1 and n¼0).

Third, scenarios in which males contribute genomes to their
daughters but females do not contribute genomes to their sons do
not exhibit the cancellation result. Such scenarios are rather odd
from a biological perspective. However, they may not be totally
Notes

Unfeasible—females have no genes

Unfeasible—females have no genes

Unfeasible—females have no genes

Unfeasible—females have no genes

Unfeasible—females have paternal genes but males have no genes

Zombie females—no cancellation

Cancellation, independent of cf & cm

Cancellation requires cf¼1/3 & cm¼2/3

Taylor’s haploidy model—cancellation, independent of cf & cm

Cancellation, independent of cf & cm

Cancellation, independent of cf & cm

Cancellation requires cf¼1 & cm¼0

Unfeasible—females have paternal genes but males have no genes

Zombie females—no cancellation

Taylor’s haplodiploidy model—cancellation requires cf¼2/3 & cm¼1/3

Taylor’s diploidy model—cancellation, independent of cf & cm
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unknown in the real world. Gardner and Ross (2011) consider a
model of the scale insect Icerya purchasi, in which females are
diploid and receive one genome from their mother and one genome
from their father, and dwarf males (that are reduced to infectious
tissues living within the bodies of their female hosts) are haploid and
receive their genome from their father. This model – representing the
endpoint of evolution of this bizarre reproductive system – is similar
to that of scenario 14 in Table 2, albeit corresponding to the trivial
case of only one adult female per patch. In the absence of regular
males, I. purchasi females are the ‘living dead’: they are fertile, and
produce daughters, but they have zero long-term reproductive value
(Gardner and Ross, 2011).

Fourth, when Taylor’s (1992a) cancellation result does occur, it
appears that it does so for different reasons in different scenarios.
In the diploidy scenario, the cancellation result obtains prior to
the computation of class reproductive values, whereas in the
haplodiploidy scenario, the cancellation result obtains only when
the class reproductive values have been set to their proper values
(i.e. cf¼2/3 and cm¼1/3). Hence, class reproductive value enters
into the explanation of the cancellation result in haplodiploids,
but does not enter into the explanation of the cancellation result
in diploids, or indeed in any other sexually-symmetrical system of
genetic inheritance.

More generally, the present analysis illustrates Eddington’s
(1928, p. 267) point that ‘‘contemplation in natural science of a
wider domain than the actual leads to a far better understanding
of the actual’’. By considering genetic systems that might not
exist, we have recovered a better understanding of the reasons for
Taylor’s (1992a) cancellation result as it relates to those genetic
systems that do exist in nature. Moreover, this approach provides
a means of gauging the depth of a theoretical result. Our analysis
suggests that the cancellation result is not particularly robust and
is not fundamental. Rather, it may be no more than coincidence
that the cancellation result obtains in the three models of genetic
inheritance (haploidy, diploidy and haplodiploidy) that are most
familiar to students of social evolution.
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Appendix A

A.1. Evolution of helping

The expected fitness – i.e. number of surviving offspring – of a
juvenile female is given by the product of the probability that she
survives to adulthood and her expected breeding success given
that she survives. This is

wf ¼ Sðx,yÞ ð1�dÞ
K

ð1�dÞSðy,yÞþdSðz,zÞ
þd

K

Sðz,zÞ

� �
, ðA1Þ

where x is the helping strategy of her mother; y is the average
helping strategy of breeding females in her patch; z is the average
helping strategy of breeding females in the whole population; and
K is a constant (Gardner, 2010). The average fitness taken over all
juvenile females in the population is therefore wf ¼K. Hence, the
fitness of the focal juvenile female, expressed relative to the
average for her class, is Wf¼wf/wf , or

Wf ¼ Sðx,yÞ
1�d

ð1�dÞSðy,yÞþdSðz,zÞ
þ

d

Sðz,zÞ

� �
: ðA2Þ
The expected fitness of a juvenile male is given by the product
of the probability that he survives to adulthood, his expected
mating success, and the expected breeding success of his mates.
This is

wm ¼ Sðx,yÞ
1�s

s
ð1�dÞ

K

ð1�dÞSðy,yÞþdSðz,zÞ
þd

K

Sðz,zÞ

� �
, ðA3Þ

where s is the sex ratio (i.e. proportion of juveniles that are male).
The average fitness taken over all juvenile males in the population
is therefore wm¼((1�s)/s)K. Hence, the fitness of the focal
juvenile male, expressed relative to the average for his class, is
Wm¼wm/wm, or

Wm ¼ Sðx,yÞ
1�d

ð1�dÞSðy,yÞþdSðz,zÞ
þ

d

Sðz,zÞ

� �
: ðA4Þ

We consider a locus that controls helping and, choosing a gene at
random from this locus from a focal individual, we denote its genic
value by g. Natural selection favours an increase in the frequency of
an allele if individuals carrying that allele are, on average, fitter than
individuals carrying different alleles: that is, if dW/dg40. In a class
structured population, this average is done using class reproductive
values as weights, so we have W¼cfWfþcmWm (Price, 1970; Taylor,
1996; Frank, 1997, 1998; Rousset, 2004; Taylor et al., 2007). Hence,
the condition for natural selection to favour helping is

cf

dWf

dgf

þcm
dWm

dgm

40: ðA5Þ

We assume vanishing genetic and phenotypic variation, so
all derivatives may be evaluated at the population average
(i.e. x¼y¼z; Taylor and Frank, 1996).

There are two routes by which a juvenile female’s helping gene
is associated with her fitness. First, it is associated with her
mother’s genetic value G, which is associated with her mother’s
helping phenotype x, which is a factor impacting upon her fitness
Wf. Second, it is associated with the genetic value of a random
adult female in her patch G0, which is associated with that adult
female’s helping phenotype y, which is a factor impacting upon
her fitness Wf. Thus, we have

dWf

dgf

¼
@Wf

@x

dx

dG

dG

dgf

þ
@Wf

@y

dy

dG0
dG0

dgf

, ðA6Þ

where from Eq. (A2), qWf/qx¼�c/S(z,z) and qWf/qy¼(b�(1�d)2

(b�c))/S(z,z); dG/dgf¼pd is the consanguinity of mother and daugh-
ter; dG0/dgf¼pf is the consanguinity of an adult female and a juvenile
female in the same patch; and dx/dG¼dy/dG0 ¼g is the genotype–
phenotype map.

Similarly, the association between a juvenile male’s gene and
his fitness is

dWm

dgm

¼
@Wm

@x

dx

dG

dG

dgm

þ
@Wm

@y

dy

dG0
dG0

dgm

, ðA7Þ

where from Eq. (A2), qWm/qx¼�c/S(z,z) and qWm/qy¼(b�(1�
d)2(b�c))/S(z,z); dG/dgm¼ps is the consanguinity of mother and
son; and dG0/dgm¼pm is the consanguinity of an adult female and
a juvenile male in the same patch. Making these substitutions
yields inequality (1) of the main text.
A.2. Class reproductive value

A class’s reproductive value describes probability that a gene
chosen at random from a distant future generation of the
population derives from an individual of this class in the present
generation (Fisher, 1930; Grafen, 2006a). The class reproductive
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values in our model satisfy:

ð cf cm Þ ¼ ð cf cm Þ
Yf’f Yf’m

Ym’f Ym’m

 !
, ðA8Þ

where Yf’f¼k/(kþl) is the fraction of a daughter’s genes that
derive from her mother; Yf’m¼l/(kþl) is the fraction of a
daughter’s genes that derive from her father; Ym’f¼m/(mþn) is
the fraction of a son’s genes that derive from his mother; and
Ym’m¼n/(mþn) is the fraction of a son’s genes that derive from
his father (Taylor, 1996; Grafen, 2006a). Solving Eq. (A8) obtains

cf ¼
kmþlm

kmþlnþ2lm , ðA9Þ

and

cm ¼
lmþln

kmþlnþ2lm
: ðA10Þ

Note that cf¼Ym’f/(Ym’fþYf’m) and cm¼Yf’m/(Ym’fþYf’m).
That is, the probability that a gene drawn at random from a distant
future generation traces its ancestry to a member of a given sex in the
present generation is equal to the proportion of the between-sex gene
flow that flows out of that sex.
A.3. Consanguinity

Coefficients of consanguinity describe the probability that a gene
chosen at random from a focal individual – in this case, an adult
female – is identical by descent with a gene chosen at random from
the same locus in another individual of given ‘role’ (e.g. the focal
individual’s daughter; Bulmer, 1994; Grafen, 2006b).

Inequality (1) of the main text reveals that the action of
natural selection depends upon the values of four coefficients of
consanguinity: pd, ps, pf and pm. These depend upon model para-
meters and other coefficients of consanguinity. For example, the
consanguinity of mother and daughter pd is equal to the probability
that a randomly chosen gene from the daughter is maternal in origin
k/(kþl) times the probability that any two genes picked at random
(with replacement) from her mother are identical by descent p, plus
the probability that the daughter’s gene is paternal in origin l/(kþl)
times the probability that a gene picked at random from her mother
and father are identical by descent pfm. Thus, we may write the
following closed system of equations:

p¼
1

kþl
þ
kðk�1Þ

ðkþlÞ2
pþ

lðl�1Þ

ðkþlÞ2
qþ

2kl
ðkþlÞ2

pfm ðA11Þ

q¼
1

mþn
þ
mðm�1Þ

ðmþnÞ2
pþ

nðn�1Þ

ðmþnÞ2
qþ

2mn
ðmþnÞ2

pfm ðA12Þ

pd ¼
k

kþl
pþ

l
kþl

pfm ðA13Þ

ps ¼
m

mþn
pþ

n
mþn

pfm ðA14Þ

pf ¼ apdþð1�aÞð1�dÞ2
k

kþl
pffþ

l
kþl

pfm

� �
ðA15Þ

pm ¼ apsþð1�aÞð1�dÞ2
m

mþn pffþ
n

mþn pfm

� �
ðA16Þ

pff ¼
k2

ðkþlÞ2
ðapþð1�aÞð1�dÞ2pff Þþ

l2

ðkþlÞ2
ðabqþðað1�bÞ

þð1�aÞð1�dÞ2ÞpmmÞþ
2kl
ðkþlÞ2

ðaþð1�aÞð1�dÞ2Þpfm ðA17Þ
pmm ¼
m2

ðmþnÞ2
ðapþð1�aÞð1�dÞ2pff Þþ

n2

ðmþnÞ2
ðabqþðað1�bÞ

þð1�aÞð1�dÞ2ÞpmmÞþ
2mn
ðmþnÞ2

ðaþð1�aÞð1�dÞ2Þpfm ðA18Þ

pfm ¼
k

kþl
m

mþn ðapþð1�aÞð1�dÞ2pff Þ

þ
l

kþl
n

mþn ðabqþðað1�bÞþð1�aÞð1�dÞ2ÞpmmÞ

þ
k

kþl
n

mþn þ
l

kþl
m

mþn

� �
ðaþð1�aÞð1�dÞ2Þpfm, ðA19Þ

where p is the consanguinity of a female to herself; q is the
consanguinity of a male to himself; pd is the consanguinity of mother
and daughter; ps is the consanguinity of mother and son; pf is the
consanguinity of an adult female and a random juvenile female on
her patch; pm is the consanguinity of an adult female and a random
juvenile male on her patch; pff is the consanguinity of two juvenile
females born on the same patch; pmm is the consanguinity of two
juvenile males born on the same patch; and pfm is the consanguinity
of a juvenile female and a juvenile female born on the same patch,
i.e. the consanguinity of mating partners.

Eqs. (A11)–(A19) can be simultaneously solved to yield all
consanguinities exclusively in terms of model parameters (i.e. a,
b, k, l, m, n and d). Unfortunately, the general solutions are too
complicated to reproduce here.
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